

 1

Abstract— Software requirement Engineering has
gauged much attention for over a past few decades. It is
one of the most serious domains considered in software
development life cycle. Different systems show different
types of uncertainties depending on requirements. As per
the academics says “Requirements are naturally
Unknowable”. Many researchers worked on
minimization of uncertainty of requirements in different
times. This article evaluates and compares among few of
the well-known state of art methods used for requirement
gathering to minimize the uncertainty and risk that were
adapted by different authors in different years.
Benchmark techniques (True Positive rate, False Positive
rate, ROC curves etc) are used to analyse the sensitivity
and specificity for the respective techniques. Paper is
concluded with RMMM plan that satisfies the risk factor.

Index Terms— Uncertainty, decision problems, prior

probability distributions, candidate architecture.

I. INTRODUCTION

Software project life cycle consists of many stages of
requirement analysis, design, implementation, testing and
evolution. Now-a-days agile software development
methodology is being followed. This is a new evolving
paradigm in software development processes. In this
methodology, change in all cycles of software project
development is being monitored and change is continuous.
This method particularly deals with change and uncertainty
occurs at any level of development cycle. They ignore the
usual facts of traditional development mechanisms such as of
heavy documentation, contracts, specific employee roles,
forward planning and strict follow-up of pre-defined steps. In
agile methodology, face-to-face communication is more
preferable. As change occurs continuously, then there might
be big risk factors or uncertainty in requirements. Risk can be
defined as an uncertain event, if it occurs, might have a
positive or negative effect on project’s failure or success. In
agile development, major reason of failure of project is
improper handling of unstable and volatile requirements. For
this, traceability matrix are also created for determination of
when, how, where and why change was occurred.

According to Kotonya and Sommerville, “Requirements
provide the description of the system, its behavior,
application domain information, system constraints,

specifications and attributes”. They also stated that major of
the failures caused because of inappropriate requirement.
Requirements can be classified in several ways such as
external interface requirements, functional requirements,
non-functional requirements, database requirements and
derived requirements. These requirements can be explained
as:

1. External interface requirements identify and
document the interfaces to other systems and
external entities within the scope of a project. For
example: UI, H/W Interfaces, S/W Interfaces,
memory constraints, dependencies and assumptions.

2. Functional requirements are also known software
product features. These are the exact services
provided by the system and how system reacts in
particular inputs.

3. Non-Functional requirements (NFRs) are actually

the capabilities of a system. For Example: Time
consumption, standards and efficiency.

4. Database requirements are related to the
specifications of a database needed.

5. Derived requirements include those requirements
which are implied from design requirements.

In agile methodology, these requirements changes or varies
from time to time. In some cases, they cause uncertainty but
in field of software engineering, uncertainty is considered as
a second-order concept. Common misconception is that by
focusing on normal behavior, uncertainty can be avoided. But
in general, uncertainty can only be minimized but cannot be
removed fully. It is neither practical nor desirable to collect
all of the information about a system. One reason of
uncertainty can be defined as a user’s perception of system. It
might be possible that user finds it difficult to express the
actual requirements. On other hand, there might be possible
that the person recording requirements is not able to
understand the view point of the user. Hence uncertainty
occurs when there is loose coupling between system’s user,
adaptation logic, and business logic. Uncertainty can be
caused by external sources or internal sources. External
uncertainty arises from environment or domain in which the
software is deployed. Internal uncertainty occurs when there
is any impact of change or impact of replacing software
component.

Comparative study on uncertainty of
software requirement and RISK analysis

Muhammad Usman, Shehzad Ahmed, Shahid M. Awan

 2

There are other systems known as self-adaptive systems.
They are the most dynamic system. Their requirements are
highly dynamic and hence level of uncertainty of high. In
such systems, they modify it to satisfy change. Benefits of
these systems are plenty but their process of development is
very challenging due to high uncertainty of requirements. In
this paper, uncertainty of requirements according to many
different systems will be discussed in upcoming section.
Related research work till yet will be discussed in section of
related work. Different techniques or models to minimize the
uncertainty will also be discussed in section of technical
framework. Comparison would be done in section of
comparative analysis by using different graphs. Future work
will also be considered and can be analyzed in section of
future work.

II. RELATED WORK

Many researchers worked on minimization of uncertainty in
software requirements as well as on risk analysis. Josh
Dehlinger and Jeremy Dixon considered mobile applications
process to analyze the uncertainty in requirements. They
stated that uncertainty may occurs at any level of the process.
They discussed many issues raised from design level to the
final development level. Authors described that in mobile
applications, non-functional requirements are more critical
and causes more uncertainty. They also discussed
self-adaptive systems for minimizing the uncertainty and
suggested different tools for the analysis of different types of
requirements. For re-using of requirements, they suggested
approach of software product line engineering (SPLE)
approach.For analysis of requirements of context aware
applications, authors stated usage of process of agent oriented
software engineering (AOSE). AOSE is mostly used for
single agent application while it is also applicable on multi
agents system.They used RELAX language for expressing
requirement specifications for self-adaptive systems.

Tharwon Arnuphaptrairong listed top ten software project
risks in his research paper. He studied papers from year 1981
to 2003 to describe dimensions of risks as well as how many
software risks were found in each study. In his paper, he
summarized the work of other researchers such as six
dimensions of software risks by Wallice Et Al are stated as
user, requirements, project complexity, planning a&
controlling, team and organizational environment. By
considering these dimensions, he explained all software risks
of each category. Tharwon also listed risk factors stated by
Boehm, Schmidt et al (USA, Hong Kong & Finland),
Addison, Vallabh, Han & Huang and Pare et al. He concluded
by calculating frequency of each dimension of software
project risk and stated that the main factors of risks are lack of
requirements, changes to requirements, failure to satisfy user
expectations, lack of user involvement and lack of
management and support. He also ranked these factors after
conducting proper survey.

Veerapaneni Esther Jyothi andK. Nageswara Rao studied
agile methods. They analyzed the requirements in agile
methodologies such as: Extreme Programming (XP), Scrum,
Dynamic Systems Development Method (DSDM), Adaptive
Software Development (ASD) and Crystal Family. Authors
listed main causes of project failures such as: incomplete

requirements, less user involvement, lack of resources,
changes in requirements and lack of planning. They also
ranked these failure causing factors in percentage. Authors
then proposed methodology of traceability of requirements in
agile practices. They explained the importance of traceability
of requirements as well as they described how to add levels of
traceability when changes in requirements occur. They listed
few tracing practices such as: tracing of stakeholders
requirements, tracing of requirements of problem, tracing of
requirements of product backlog, tracing of requirements of
sprint backlog, tracing of requirements of code, tracing of
requirements of testing and documentation. At the end, they
concluded with eleven principles to reduce the risk factors as
well as uncertainty in software requirements.
Rahul Thakurta proposed a framework for prioritization of
requirements of a software project. He explained algorithm
for non-functional requirements (NFR) prioritization. NFR
algorithm consisted of six major steps. First step was to
identify the NFRs. Second step was the creation of project
level scenario. This scenario is then linked to the objectives in
third level of the algorithm. Assessment was done in next
step. Adjustment according to the score of NFRs will be done
in fifth step and in last step; a heuristic was designed to
decide the dropped NFRs from scenario. Then researchers
took a case study and validate these steps. At the end they
compared some prioritization techniques and stated their
weaknesses and strengths.

Naeem Esfahani and Sam Malek considered self-adaptive
systems for the explanation of uncertainty of requirements.
They took an example of robotic software which a
self-adaptive system and analyzed the uncertainty factors that
were occurred. They stated important reasons of occurrence
of uncertainty such as: simplifying assumptions, model drift,
noise, parameters changes, decentralization and changing in
context. They also discussed the impact of uncertainty in
whole self-adaptive system. Authors also presented different
mathematical theories for expressing uncertainty factors.
They also used RELAX language for documenting the
requirements.

Emmanuel Letier, David Stefan and Earl T. Barr presented
uncertainty and risk in software requirements as well as in
software architecture. They described cost-benefit analysis
under uncertainty with impact of information on risk. They
also discuss design decisions under uncertainty. They took
experiment using cost-benefit model for taking decision on
design issues and then also define design risks as well as
architecture issues.

III. PROPOSED METHODOLOGY

In this paper, the main focus is to reduce risk using proposed
model and RMMM plan. There are few steps that should be
followed before the execution of RMMM plan.

 First step is to model the design decision problem. A
designer should list down all the design problems. For
instance, if there is a mobile application development, then a
designer should consider problems related to user interface
(UI) for all types of screens such as for I phones, window
phones, android and blackberry. As there are large amount of
difference and variations in the screen size, so designers
faced difficulties in finding appropriate requirements for each

 3

kind of resolution. For this, they selected requirements on
group based sizes.

Secondly, define the process of reusability of software across
different mobile phones. Each mobile phone is using
different operating system platform, different hardware as
well as different computing formats. Designers should
consider all options during the process of mobile application
software engineering because all have different influences on
software requirements. If single platform will be targeted
then developers have to build a single application that should
be enriched in all platforms requirements with high risk of
functional as well as non functional inconsistencies.

Third level is of designing of context aware mobile
applications. As now-a-days mobile applications are going
through rapid change so there should be such application
which is dynamic. Mobile phones are using for each process
such as for time awareness, location awareness, weather
awareness and device awareness etc. Hence it should be
context-aware mobile application. For such aware nesses,
requirements should be keenly analyzed by the developers’
team to get better product at the end. Second step of proposed
methodology is to define the decision risk. After going
through all requirements for all levels of process, there comes
a major point to balance the change and uncertainty in
requirements. Because of contextual nature of mobile
application, it might be possible that application does not
fulfils all functional as well as non functional requirements,
hence this initiates the need of self-adaptive application. In
self-adaptive applications, rich features are provided with
less stringent requirements. In self-adaptive application, it
runs in normal conditions with normal requirements but
when needed, it will modify its behavior automatically which
somehow reduces functionality but kept on providing it
rather than providing nothing. For instance: if there is a
location-based application, features needed for such
application are GPS and it requires high consumption of
battery. For such application, it is better to use data of old
used location rather than giving no data. For this
self-adaptive process, mobile application requirements must
be integrated fully with agile development methodology.
Hence developers should be more aware of the requirements
integrations with the application for better understanding of
application. Third step of proposed methodology is to elicit
what decision makers already know (their prior probability
distributions). If decision makers know it early that mobile
application should only be self-adaptive application then
there is no need of gathering information of any other
application type and just start analyzing the requirements for
self-adaptive application.

Fourth step is to shortlist candidate architectures based on
expected value, expected cost, and risks. While considering
the mobile application development process, main
architecture decided by most of the authors as well as
researchers was of self-adaptive system, Because of its less
cost and risk. It has capability of at least fulfilling all
functional requirements with many of other non-functional
requirements as well.

Fifth step is to compute the expected value of information. In
this step, collected information is computed whether it is
enough or there is a need to analyze the requirements more.
In mobile application development, many authors and
researchers used many tools in every step of development
process. Authors recommended Software Product Line
Engineering (SPLE) which develops a suite of application
which shares all common requirements as well as it manages
all of them. It will be advantageous in the process of
reusability and reduces cost of analysis and development
processes. In SPLE approach, there are two main phases such
as domain engineering and application engineering. In
domain engineering phase, requirements that are common as
well as variable are defined while in application engineering
phase, all defined requirements are used to develop any
application. This will help developer to understand that
which requirements are common for what type of design and
platform. By using this, it is possible to develop different
products by using single team to developer as they already
know common set as well as variable set of requirements and
its easy for them to develop application in less time. Hence
SPLE helps in duplication of early software engineering
process work such of analyzing requirements.

To provide, self-adaptive as well as context-awareness in
application, approach named RELAX is most widely used.
This is requirement specification language which provides
medium to express behavioral and environmental uncertainty
considering the dynamically adaptive system. RELAX shows
two main types of requirements such as variant and invariant
requirements. Variants requirements are those requirements
that should always be satisfied while invariant are those
which may or may not be satisfied. Both requirements are
specified using structural natural language by using different
operators, temporal, modal and fuzzy logic. In case of every
variant requirement, RELAX process a document that what

 4

are the effects caused by the environmental changes on the
requirements and how they can be satisfied. It also
documents uncertainty of requirements as well as how to
adapt any change by the application while facing such
uncertainty and also provide some functionality too. This will
help developers a lot when it is integrated with agile
methodology to provide better structures as well as better
delivery of non-functional requirements in changing
environment.

Sixth and last step is to seek additional information where
valuable (creates posterior distributions). By using the above
mentioned tools, there is a possibility of adding as well as
deleting many of requirements according to the change in any
level. This step will be helpful to track change whenever
there is a change in requirements. It will keep the record of
changes and helps in reducing risk.

Now after proceeding all above steps, RMMM plan will be
executed. This plan might be executed as a part of software
development process or might be a separate document. In
most of the projects, organizations prefer to make a separate
document of RMMM. Once it is documented, steps of risk
mitigation and monitoring will be started. In risk mitigation,
there is an activity to avoid problem by using many possible
solutions while in risk monitoring process, there will be a
project tracking activity.

It has three main objectives such as: it will assess whether
predicted risks occurs or not, it will ensure that risk aversion
steps defined for the risk are being properly applied or not

and it will collect information that can be used for future risk
analysis.

The findings from risk monitoring may allow the project
manager to ascertain what risks caused which problems
throughout the project and hence it is helpful for tracking of a
project.

IV. SOME COMMON MISTAKES

Some researchers had done good work on minimization of
risk as well as they reduced uncertainty up to some level. But
most of them does not achieved the highest level of
minimization. Mobile application development was very well
considered by Josh Dehlinger and Jeremy Dixon. But they
have not analyzed the requirements from the start of the
process. At the end they just concluded that self adaptive
application is better. Such application can only gives benefit
up to some level and functional requirements are highly
considered in such applications. Non functional requirements
are somehow ignored and they were actually the most
important thing when mobile application is under
considerable situation. Similarly, in other paper by Tharwon
Arnuphaptrairong, top ten risks were listed. He states many
kinds of risks as well as their calculations while considering
many dimensions of risks. The main problem was huge
number of calculations. In this technique, most of the time
was consumed in just analysis and with no output. Though he
also ranked the risk factors according to their priority but still
huge calculations was needed. Requirements of agile
methodologies were discussed by Veerapaneni Esther Jyothi
and K. Nageswara Rao. They listed major failures reasons of
the project. Also they ranked these failures according to their
priorities. The major mistake they made that they does not
have followed any proper process for each type of agile
methodology. They just used traceability matrices for tracing
of requirements at each level. They have also listed some
principles of reducing the risk factors which were good but
proper process was not defined. Non-functional requirements
were well considered by Rahul Thakurta. He proposed a
proper framework for prioritization of requirements of a
software project. He also presented an algorithm for this
purpose named as NFR algorithm. But this algorithm can
only be applied to some specific type of requirements and not
to all requirements. Impacts of uncertainty of requirements
were discussed well by Naeem Esfahani and Sam Malek. But
they took only self adaptive system for their experiments as
well as mathematical theories presented by them was highly
time consuming. Emmanuel Letier, David Stefan and Earl T.
Barr also presented their work in this field of minimization of
risk. They have used cost-benefit analysis model. This model
is only good for design decisions and not enough good for
further levels of development process.

V. CONCLUSION

As discussed earlier in this paper about the common mistakes
of many researchers, our RMMM plan is considered better as
compare to other discussed techniques, plans and processes.
RMMM plan is easy to execute as well as it is not much time
consuming. There are only few steps to execute. Some steps

 5

are iterative in nature which helps the executer to refine the
requirements in lesser time. Also RMMM plan is suitable for
all kinds of requirements at any level of development
process. Hence suggested methodology is best as compared
to other methodologies of other researchers.

VI. ACKNOWLEDGMENT

First Author – Muhammad Usman
Mphill Computer Sciences [University of Management and Technology -

2016]
Project Lead – Ufone Pakistan

 Second Author - Shehzad Ahmed
Mphill Computer Sciences [University of Management and Technology -

2016]

Shahid Awan

VII. REFERENCES

• Josh Dehlinger and Jeremy Dixon. (2012), Mobile
Application Software Engineering: Challenges and
Research Directions.

• Tharwon Arnuphaptrairong. (2011), Top Ten Lists
of Software Project Risks: Evidence from the
Literature Survey.

• Veerapaneni Esther Jyothi andK. Nageswara Rao.
(2011), Effective Implementation of Agile
Practices.

• Michalis Famelis, Rick Salay, and Marsha Chechik.
(2013), Partial Models: Towards Modeling and
Reasoning with Uncertainty.

• Rogerio de Lemos, Holger Giese, Hausi A. Müller
And Mary Shaw. (2011), Software Engineering for
Self-Adaptive Systems: A Second Research
Roadmap

• Diane E. Strode� , Sid L. Huff, Beverley Hope &
Sebastian Link. (2012), Coordination in co-located
agile software development projects.

• Rahul Thakurta. (2012), A framework for
prioritization of quality requirements for inclusion
in a software project.

• Naeem Esfahani and Sam Malek.
(2012),Uncertainty in Self-Adaptive Software
Systems.

• Gabriel Tamura, Norha Villegas, Hausi Muller,
Joao P. Sousa, Basil Becker, Mauro Pezze, Gabor
Karsai, Serge Mankovskii, Wilhelm Schafer &
Ladan Tahvildari. (2012), Towards Practical
Runtime Veri_cation and Validation of
Self-Adaptive Software Systems.

• Emmanuel Letier, David Stefan & Earl T. Barr.
(2014), Uncertainty, Risk, and Information Value in
Software Requirements and Architecture.

